XC6VLX130T-2FFG784I_XC6VLX550T-1FF1760I

发布时间:2020/10/28

XC6VLX130T-2FFG784I_XC6VLX550T-1FF1760I导读

CPU+GPU+FPGA的加速计算,无疑瞄准的是数据中心领域这一蓝海,Intel此前已多次表明已是围绕数据为中心的一家企业,而英伟达则在最近提出的收购案以及发布的各种新产品中不断透露“占领高地”的决心……。

而显卡方面则也与NVIDIA打的“焦灼”,先后赢得了索尼、微软主机和三星手机的青睐。 “AMD
Yes”是最近期间网友对AMD逐渐步入高光时刻的最大评价,自2014 年10
月苏姿丰升任总裁兼CEO,作风强势又极具亲和力的苏姿丰也被粉丝们亲切地称为“苏妈”。尤其是锐龙、霄龙处理器,从笔记本到桌面再到数据中心都硕果累累。


XC6VLX130T-3FFG484C

四款产品中,旗舰处理器为锐龙9 5950X,和锐龙9
3950X一样,都是双CCD模块、16核心32线程、8MB二级缓存、64MB三级缓存,其中三级缓存从四块16MB变成了两块32MB,分别由8个核心共享,最高加速频率从4.7GHz来到了4.9GHz,基础频率则为3.4GHz。

。再加上大小写(大写/小写/全大全小/小型大写)、斜体(意大利体/罗马体)、缩放体(横向缩放)、粗细、指定大小(显示/文本)、波痕体、衬线(总体分为衬线体和无衬线体),这一数量可以扩充到数百万,使得文本识别成为机器学习领域中一个振奋人心的专业学科。随着人类语言书写形式的演进,已经发展出数千种独特的字体系。

但是,有机遇就会有挑战。AI
推断作为采用经训练的机器学习算法开展预测的过程,无论是部署在云端、边缘还是终端,都要求在严格的功耗预算下提供优异的处理性能。普遍的看法认为,仅凭 CPU
难以满足这一要求,需要某种形式的计算加速才能更高效地处理 AI 推断工作负载。

Softnautics 采用了赛灵思 Vitis AI
堆栈并运用该软件提供加速,开发出混合应用,同时实现了 LSTM 功能,通过将 TensorFlow-lite 移植/迁移到 ARM
进行有效的序列预测。图像预处理/后处理通过 Vivado 使用 HLS 实现,而 Vitis 的作用是使用连接文本提议网络(CTPN)完成推断。它使用
N2Cube 软件在处理侧(PS)运行。最终,Softnautics
将该解决方案用于视频流水线中的实时场景文本检测,并使用可靠的数据集对模型进行改进。


XC6VLX130T-2FFG784I_XC6VLX550T-1FF1760I


XC4VLX40-10FF1148I

XC6VLX130T-1FFG1156C XC6VLX130T-3FFG1156C
XC6VLX195T-1FF1156C XC6VLX130T-3FF484C XC6VLX130T-3FFG484C XC6VLX130T-2FF484C
XC5VTX240T-2FF1759I XC5VTX240T-2FFG1759C XC5VTX240T-2FFG1759I
XC6VLX130T-1FFG484C XC6VLX130T-1FFG484I XC6VLX130T-1FFG784C XC6VLX130T-1FFG784I
XC6VLX130T-1FF484C XC5VSX95T-3FF1136C XC5VSX95T-2FFG1136I XC5VTX240T-1FF1759C
XC5VTX240T-3FF1759C XC5VTX240T-3FFG1759C XC6VLX130T-1FF1156C XC6VLX130T-1FF1156I

XC6VLX240T-1FF784I XC6VLX195T-2FF1156I
XC6VLX195T-2FF1156C XC6VLX195T-2FF784I XC6VLX195T-2FF784C XC6VLX130T-3FF1156C
XC6VLX130T-2FFG484C XC6VLX195T-3FFG1156C XC6VLX130T-2FFG784I XC6VLX240T-1FF1156C
XC6VLX195T-3FFG784C XC6VLX240T-1FF1759C XC6VLX240T-1FF1156I XC6VLX195T-1FF784C
XC6VLX130T-2FF784I XC6VLX130T-3FFG784C XC6VLX195T-1FF784I XC6VLX130T-2FFG1156C
XC6VLX130T-2FFG784C XC6VLX130T-2FF484I XC6VLX130T-2FFG1156I XC6VLX130T-1FF484I
XC6VLX130T-3FF784C XC6VLX130T-1FFG1156I 。

XC5VTX240T-2FF1759C XC5VTX240T-1FF1759I
XC5VTX240T-1FFG1759C XC5VSX95T-3FFG1136C XC5VSX95T-1FFG1136C XC5VSX50T-3FFG665C
XC5VSX95T-1FF1136C XC5VTX240T-1FFG1759I XC5VSX95T-2FFG1136C XC5VSX95T-1FFG1136I
XC5VSX95T-2FF1136C XC5VSX95T-1FF1136I XC5VSX50T-2FF665C XC5VSX50T-2FFG665C
XC5VSX50T-2FFG1136I XC5VSX95T-2FF1136I 。

XC4VLX200-11FFG1513I XC4VLX200-12FF1513C
XC4VLX200-12FFG1513C XC4VLX200-10FFG1513C XC4VLX200-10FFG1513I
XC4VLX200-11FF1513C XC4VLX40-10FF1148I XC4VLX25-11FFG668C XC4VLX40-10FF668I
XC4VLX40-10FF1148C XC4VLX25-12FFG668C XC4VLX40-10FF668C XC4VLX25-12SFG363C
XC4VLX25-12FF668C XC4VLX25-11SF363I XC4VLX60-10FF1148I XC4VLX25-11SFG363I
XC4VLX25-11SF363C XC4VLX25-11FF668I XC4VLX25-11SFG363C XC4VLX25-11FFG668I
XC4VLX25-11FF668C XC4VLX160-10FFG1148I 。

XC6VLX130T-2FFG784I_XC6VLX550T-1FF1760I


英特尔的10nm仍然推迟,使得除了英特尔关注的云市场之外,Xilinx在收购Altera后占据了FPGA市场的主导地位。FPGA和ASIC之间的竞争将继续。然而,在7纳米处,FPGA速度和密度大大提高,功耗也较低,因此这种竞争格局可能会发生变化,尤其是ASIC和FPGA。特别是在人工智能时代,Xilinx还希望通过这一优势实现英特尔和Nvidia的未来。灵活性和适应性是ACAP的主要卖点。拆分SoC原型和仿真市场。显然这适用于英特尔和Nvidia。ACAP的推出将有助于赛灵思与更高级别的竞争对手在新市场中展开竞争。

IplImage对图像的另一种优化是变量origin原点,为了弥补这一点,OpenCV允许用户定义自己的原点设置。在OpenCV类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。IplImage类型较之CvMat多了很多参数,比如depth和nChannels。